Two-geodesic-transitive graphs which are neighbor cubic or neighbor tetravalent

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-geodesic transitive graphs of prime power order

In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be   $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...

متن کامل

On Nearest-Neighbor Graphs

The “nearest neighbor” relation, or more generally the “k nearest neighbors” relation, defined for a set of points in a metric space, has found many uses in computational geometry and clustering analysis, yet surprisingly little is known about some of its basic properties. In this paper, we consider some natural questions that are motivated by geometric embedding problems. We derive bounds on t...

متن کامل

Arc-transitive cycle decompositions of tetravalent graphs

A cycle decomposition of a graph Γ is a set C of cycles of Γ such that every edge of Γ belongs to exactly one cycle in C. Such a decomposition is called arc-transitive if the group of automorphisms of Γ that preserve C setwise acts transitively on the arcs of Γ . In this paper, we study arc-transitive cycle decompositions of tetravalent graphs. In particular, we are interested in determining an...

متن کامل

Tetravalent arc-transitive graphs of order 3p2

Let s be a positive integer. A graph is s-transitive if its automorphism group is transitive on s-arcs but not on (s + 1)-arcs. Let p be a prime. In this article a complete classification of tetravalent s-transitive graphs of order 3p is given.

متن کامل

Nearest-Neighbor Graphs

Consider a set  of  points that are independently and uniformly distributed in the -dimensional unit cube. Let  ∈  . There exists almost-surely  ∈  such that  6=  and | − |  | − | for all  ∈  ,  6= ,  6= . The point  is called the nearest neighbor of  and we write  ≺ . Note that  ≺  does not imply  ≺ . Draw an edge connecting  and  if and only if  ≺ ; the resulti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2018

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1807483j